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Abstract—Reinforcement Learning combined with Deep
Learning (DRL) has emerged as a powerful paradigm. The
exceptional performance of such models on tasks including
gaming, robotic simulations, autonomous driving and multitude
of other applications showcase their flexibility and promise to
tackle complex real-world problems. However, training DRL
models presents at least two significant challenges: (i) training
times and (ii) effective exploration of the parameter search
space. Efficient exploration of the parameter space is critical
in achieving optimal performance, and is especially challenging
in environments with sparse rewards, as in RL settings. These
challenges call for solutions that allow reasonable learning with
limited resources. Hence, in this work, we try investigating
various parallel strategies to speed up training and effectively
explore the parameter space to improve the baseline performance
of DRL networks on a set of Atari games.

Index Terms—Distributed training, Parallel computing, Deep
Reinforcement Learning, Robotics

I. INTRODUCTION AND PROBLEM STATEMENT

Reinforcement Learning (RL) is an interdisciplinary area of
machine learning and optimal control where an agent interacts
with the environment and changes its current state by taking
some actions. While doing so the agent receives a reward and
the goal of the agent is to maximize the cumulative reward.
There are two main types of RL techniques, model-based RL
and model-free RL. Model based RL methods require the
model of the environment and primarily rely on planning.
Model-free RL methods are explicit trial-and-error learners
and primarily rely on learning.

In DRL we use neural networks (usually fully connected) as
function approximators to represent the optimal policy as well
as the value function. Furthermore, due to cost and limited
learned behavior from physical trials, the training experiments
for an RL agent are usually carried out in a physics based
simulator (e.g. Gazebo, Mujoco & Isaac Sim).

One of the main advantages of deep learning is that com-
putation can be easily parallelized. In order to exploit this
scalability, deep learning algorithms have made extensive use
of hardware advances. A myriad of such techniques has been
proposed for cheaper and faster training in the past. In the
scope of this project, we consider Actor-Critic, a model-free,
off-policy RL algorithm suitable for continuous state and ac-
tion space with different parallelization strategies. We plan to

investigate different levels of parallelism in a DRL model for
some specific tasks. For instance, we can parallelize the model
at an environment-level, multiple agents and environments
are spawned in parallel, each one independently exploring
different parts of the state-space. Another strategy could be
to spawn multiple agents in a single environment, reducing
the memory and computational requirements. The parallelism
can also be achieved at network level by distributing multiple
agent-environment instances across computing nodes, each
receiving different hyper-parameter initialization.

Although RL training is implemented at much higher scale
in industry, our plan was to get some insights into the effect
of parallelism in training of RL models and hopefully serve
as a starting point for future research in this direction. By
conducting thorough experiments and analyses, our objective
is to uncover effective parallel methods for accelerating RL
training thereby reducing computational costs and improving
their scalability. In this project, we successfully implemented
data- level parallelism, where multiple compute nodes are
used to train the policy represented by the neural network,
network- level parallelism where multiple agent-environment
instances were distriubuted across computing nodes (CPUs
and GPUs) and a slightly advanced population based training
PBT variant of network level parallelism, where the worst
performing agents are replaced by the best performing agents.
Our implementation for respective parallization strategies can
be found at following github links:-
PAAC:-https : //github.gatech.edu/tdeshpande33/PAAC
DNNP:- https : //github.gatech.edu/tdeshpande33/DDNP
PBT:- https : //github.gatech.edu/tdeshpande33/PBT Atari

Section II describes a brief literature review of the previous
work done in the domain of Reinforcement learning and
various parallelization strategies used. Section III gives a brief
background about the project with section IV discussing the
impacts and contributions of our work. Section V describes
the results obtained and comparative evaluations of different
parallelization strategies. Section VI gives conclusion with
section VII stating the contributions from each team member
to the project.



II. RELEVANT WORK/ BACKGOUND

A. Parallelizing Artificial Neural Networks

Several techniques have been proposed for facilitating a
cost-effective training regime for deep neural networks. This
include model and data-level parallelism which have been
proved to accelerate training times and enhance computational
efficiency, as reviewed by Tal et al. [2].

DistBelief [4] is a framework that, utilizes numerous ma-
chines to enable parallelized training of large models. This
parallelism is achieved through the implementation of Down-
pour SGD, an asynchronous version of vanilla Stochastic
Gradient Descent, which computes gradients and updates the
parameters across model replicas distributed among multiple
compute clusters. The authors have achieved state-of-the-art
performance on networks with over a billion parameters while
minimizing overall training times.

Alfredo et al. [3] designed a framework for effectively
parallelizing networks on GPU with synchronous SGD and
eliminated the need for multiple replicas of the parameters
across the cluster. The proposed approach is generalized to
both on-policy and off-policy algorithms and demonstrated
state-of-the-art performance on different tasks in the Atari
environment. Another work [6] on neural network training,
introduces a population-based training scheme wherein the
best-performing model is discovered by parallelizing the hy-
perparameter search across distributed clusters.

B. Deep Reinforcement Learning

In addition to the previous literature on model and data-
level parallelism in deep neural networks, several methods
have been proposed for distributing the training of RL models.
Gorila [7] employs parallel instantiation of environments for
multiple agent processes to gather individual experiences,
which are then aggregated in a shared experience buffer. Each
learner process maintains a replica of the policy to monitor
changes in its parameter subset and periodically communicates
these changes to the shared parameter server. This approach
has demonstrated superior performance over traditional se-
quential DQN (Deep Q-Network) in various ATARI games,
achieving a 2x training speedup. Shixiang Gu et al. [5] have
also shown reductions in training durations by asynchronously
parallelizing the RL algorithm across multiple robots, which
eventually pool their policy updates.

C. Population Based Approach

Jaderberg et al. introduced another approach called popula-
tion based training (PBT). Apart from being just asynchronous
and parallel, PBT takes into consideration the performance
of model under training. Importantly, it discovers a schedule
of hyper-parameters rather than just following a sub-optimal
strategy of trying to find a single fixed set to use for the whole
course of training. The worst performing models are replaced
by best performing models during training. The authors also
show that, PBT achieves faster wall-clock convergence.

Fig. 1. Population based training proposed by [6] and comparison to
Sequential and Parallel Approach

Fig. 2. Parallel architecture proposed by [3]

III. PROPOSED APPROACH

The baseline setting of our experiments is founded on [3].
Fig. 2 summarizes their proposed architecture, which in this
work we call a cell. In summary, this setting supports multiple
workers interacting with the environment in parallel and they
communicate their changes to the master node that governs
the global updation of the critic and the value network. The
updated policy is then broadcasted among the workers thereby
closing the loop. We will experiment with two augmentations
to this architecture, both separately and potentially in combi-
nation.

A. DNN-level Parallelism

In this approach, we parallelize the computations of DNN
responsible for learning the policy and value functions, as in
Fig. 3. There are at least three strategies to realize this: (i) data-
level parallelism, and model-level parallelism with (ii) intra-
layer parallelism, and/or (iii) inter-layer parallelism. Data-level
parallelism splits the network across multiple workers, each
holding a copy of the model weights. Inter-layer parallelism
assigns different network layers among workers, while intra-
layer parallelism divides the tasks of a single layer among sev-
eral workers. While model-level strategies presents a smaller
memory footprint, they have a higher communication overhead



Fig. 3. DNN Parallelism vs Single-GPU Baseline

in comparison to data-level strategies, making the latter more
suited for smaller Neural Networks.

For this project, we utilized Data-Level parallelism due to
the relative small size of the of the DNN, which consists
of a CNN with four layers. Nonetheless, our implementation
utilizes Pytorch’s DDP mechanism, and is easily extendable
for parallelization at the model level and allows for training
in multi-GPU multi-nodes environments.

More specifically, worker-environment block pairs are di-
vided evenly among the GPU devices and at the end of each
episode their gradient is synchronized before the model is
updated.

Due to resource constraints associated to PACE, we only ran
the experiments using 2 GPUs in the same node; nonetheless,
it was sufficient to verify the correctness and improvements
of our method relative to the baseline implementation.

Figure 4 shows the results of our experiments consider-
ing the first 63 Million steps (approximately 10 hours of
training for the single-GPU case)1. For a small number of
environments we achieve a speedup of approximately 2x,
increasing to 3x as the number of environments grows. This
increase in speedup can be attributed to the fact that, with
fewer environments, there are fewer parallel operations to
exploit. As a result, there is a smaller offset of the higher
communication overheads, leading to smaller gains relative to
the single-GPU case when more environments are considered.
Finally, both methods yield similar rewards, demonstrating
that our approach successfully accelerated training without
compromising model performance.

B. Choice of programming language

We utilized PACE machines with CUDA GPUs for our ex-
periments. For the programming language, we mostly utilized
Python and Pytorch with occasional references from [6] and
[3].

IV. PROJECT CONTRIBUTION

In this project, we try to contribute via carrying out a com-
parative analysis of state-of-the-art parallelization strategies.
For the benefits parallelization offers to the field of reinforce-
ment learning, we study different parallelization strategies and

1We selected this stage because, due to constraints with PACE, we could
not run all the experiments for the same number of hours/steps, and this is
a common stage for all the experiments considered in the table. Nonetheless,
as 5 shows, the model is well-performing and stable and at this stage.

Fig. 4. DNN Parallelism vs Single-GPU Baseline

their strengths and weakness via thorough experimentation.
We come to a conclusion that the most basic advantage actor
critic (A2C) algorithm, a synchronous version of asynchronous
advantage actor critic(A3C) is suitable for environments where
limited computational resources are available or running asyn-
chronous processes is not possible/feasible.

The parallel advantage actor critic algorithm (PAAC) is
another asynchronous variant of A3C, well suited for training
deep RL agents in parallel across multiple CPU cores.It
leverages parallelism to accelerate training by running multiple
copies of the agent in parallel, each collecting experiences and
updating the model independently. Use of PAAC is recom-
mended when the RL trask under training environments with
high-dimensional state and action spaces, where collecting
experiences from agent-environment interaction is particularly
expensive. It finds its uitility the most in scenareos when dis-
tributed computaitonal resources such as clusters are available.

Population Based training (PBT) is a meta-algorithm (i.e. it
decides how to combine two or more algorithms) that com-
bines reinforcement learning and evolution algorithms. It dy-
namically adjusts the hyper-parameters and shares knowledge
across multiple agents to accelerate learning. It is specifically
useful when hyper-parameter tuning is crucial for achieving
good performance.

V. EVALUATION PLAN AND DATASETS

We evaluated our implementation based on the simulation
results on the proposed parallel strategies. As far as
our dataset is concerned, we collated agent-environment
experience tuples from the open-sourced implementation of
multiple Atari environments by Gymnasium. To keep the
implementations simple and results consistent we finalized our
environment to be the Breakout Atari environment provided
by Gym. But to test our hypothesis we mainly used runtime
(model convergence) and scalability as an evaluation metric.
We measured how our implementation scales as we increase
the number of environments (in distributed implementation
case this corresponded to increasing the number of machines
used for computation) and compare the scores and runtime
of our method using the framework mentioned in [3] as
a baseline. In summary, our goal was to achieve a better
runtime and scalability than the baseline approach.



A. Multi-threaded parallelism

1) Description: Firstly, we started our analysis with
the implementation of PAAC [3] abbreviation for Parallel
Advantage Actor Critic, on the Breakout-v4 Atari environment
[1]. The implementation of PAAC involves training of a single
model loaded on the GPU that is shared across multiple
concurrent CPU threads. Each CPU thread can be considered
a learner nw which in turn contains na number of actors
(RL environment instances) and hence the total number of
environments instances, ne would be nw × na. This is a
variant of data-level parallelism in which each worker or
actor thread is responsible for the collection of experiences
from their respective environments and passing it on to the
master for training the model as shown in Fig.2. We use a
fork-server framework for instantiating learner threads along
with a data structure to queue the experience tuples from
the actors within. Synchronisation is done at the end of one
step in each environment by placing locks and eventually
concatenating the experiences gathered to train the model
loaded on the master thread. To preserve flexibility in the
design, we developed the entire framework in PyTorch and
used its multiprocessing module to set up the fork-server
for parallel training. Our implementation closely follows
the structure outlined in the provided code, yet it has been
entirely replicated using PyTorch.

Algorithm 1: Parallel Advantage Actor Critic (PAAC)

1 Initialise timestep counter N = 0 and network with
weights θ, θv in the master thread.

2 Initialise shared containers Rs,Ms, Ss and setup a set
e of ne environments in a fork-server framework.

3 while N ≤ Nmax do
4 for t = 1 to tmax do
5 Sample at from π(at|st; θ);
6 Compute vt from V (st; θv);
7 parallel for i = 1 to ne do
8 Execute action at,i in environment ei
9 Collect new state st+1,i, reward rt+1,i and

mask mt+1,i in shared containers.
10 end
11 mask is an indicator function 1, denoting the

end of an episode
12 end

13 Rtmax+1 =

{
0 if terminal st
V (stmax+1; 0) otherwise

14 for t = tmax to 1 do
15 Rt = rt + γRt+1

16 end
17 Compute dθ, dθv . Update parameters θ & θv .
18 N ← N + ne · tmax;
19 end

2) Experimentation and Results: We used the PACE
Phoenix Cluster for our experimentation and we chose our
network hyperparameter configuration as in [3]. We tested our

Fig. 5. Results describing the training steps/s and rewards accumulated across
environments

parallel implementation with nw = 8 learners while varying
the number of actors in the range of na ∈ {2, 4, 8}. NVIDIA
A100 GPU was used for training the model and Intel Xeon
Gold 6226 CPU @2.70 GHz with 64 threads was requested
for data collection from parallel environments out of which
only 12 learner threads were used. Nmax was fixed as 80M
with a wall time of 15 hours for training and episode duration
of 10000 steps. The number of steps tmax before pushing an
update to the model was fixed as 5.
From the 5, we can infer that the model with 64 environments
(env) reaches the maximum score much quicker than the other
two versions. The time taken by 64 env version to reach a score
of 100 was estimated to be around 7 hours, 32 env was around
9.5 hours & 16 env was around 12 hours and we obtain an
average speedup of 1.3X. With increase in the total number
of environments, the number of steps performed per second
increases as rightly indicated by the training steps plot.

B. Distributed parallelism

1) Description: To evaluate the effectiveness of PAAC
across clusters, we employed distributed training, utilizing
the Remote Procedure Call (RPC) framework. This approach
facilitates model training across multiple processes in
implementationa topology by providing mechanisms for
remote communication. We extended the idea of PAAC to a
distributed setting where we define two entities, Agent and
Observers. Each observer process or the callee will contain
an instance of the environment to run and will pass the state
vector (st+1, rt+1,mt+1) to the agent when requested. The

https://github.com/Alfredvc/paac


Fig. 6. Results describing the training steps/s and rewards accumulated across
environments

Agent process or the caller on the other hand will hold
the model that needs to be trained and will use the remote
reference object from RPC to make calls to the remote
machines. The framework for the distributed setting is shown
in Fig. 7.

2) Experimentation and Results: We used the PACE
Phoenix Cluster for our experimentation and we chose our
network hyperparameter configuration as in [3]. Since we had
some restrictions on the number of GPUs, we chose to train
the model on CPU. The observations for the Breakout Atari
environment are images and training a convolutional neural
network on CPU is a tedious task and so we resorted to train
a much simpler environment called the LunarLander. This is
justified because our objective is to verify the effectiveness of
PAAC in a distributed setting and thus our hypothesis is en-
vironment agnostic. We tested our distributed implementation
with ne ∈ {16, 32} observers and we requested for 8 compute
nodes with 8 tasks per node thereby handling 64 processes
in total. The model is currently being trained for 80M with
a wall time of 15 hours for training and episode duration of
10000 steps. However, we will attach the model performance
till 7M steps.

From the 6, we can infer that the model trained by collecting
experiences from 32 observers reaches the score of 200 within
4h 40m whereas the time taken by 16 env counterpart to reach
the same score was estimated to be around 7 hours, giving
a 1.5x speedup. This proves that, distributing the training
can help in faster training of an RL environment and also

Fig. 7. Distributed PAAC

inherently encourages exploration.
Algorithm 2: Distributed PAAC

1 Initialise timestep counter N = 0 and network with
weights θ, θv in the agent process (rank:0) by starting
the RPC framework.

2 Initialise ne observer process with rank:(1,ne - 1).
3 Observer processes:
4 Reset Environment and get the state st
5 Request action by calling the agent along with st
6 Receive action and step to observe st+1, rt+1, mt+1

7 Record observations in the agent.
8 Agent process:
9 Wait until all the observers have finished recording.

10 Train the model with gathered data.

C. Population Based Training

1) Description: : As mentioned earlier in the introduction
section, this is an meta variant of PAAC algorithm described
in Multi-threaded parallelism section. In this section, although
not totally bug free, but we were able to implement population-
based-training algorithm in a GPU based environment, given
that no such prior implementation exists. In this implementa-
tion, the worst x % of the workers (agents) are replaced by best
x% of the agents. After the replacement, the hyper parameters
for newly replaced workers are mutated by some factor. In our
case, the worst 20% of the workers were replaced with best
20% ones. The bestness factor of a model was decided based
on the cumulative reward it has generated over the episode.

Following the terminology, from [6], we say the model
is exploiting its current knowledge when a poor performing
model gets replaced by a better performing model and we
say the model is exploring when the hyper-parameters are
perturbed. Unlike other methods, which usually only exploit
current knowledge, this techniques also considers exploration
making it possible to explore previously un-explored parts of
the state-action-space. In terms of evaluation and compari-
son to base-line, the model was able to achieve scalability
where it was able to run multi-threaded agent-environment
simulation (simulating multiple environments in parallel). The
exploration-exploitation aspect of the project achieved a robust



Fig. 8. Population Vs Best and Worst Scores

policy learning with increase in population but increasing the
population also resulted in slightly increased runtime. The
policy model architecture used in this implementation is same
as used in the PAAC.

2) Experimentation and Results: For experimentation, we
used the PACE Phoenix Cluster for our experimentation and
we chose our network hyperparameter configuration as in
[6]. We tested our parallel implementation from a population
of np = 4 to np = 10. NVIDIA A100 GPU was used for
training the model and Intel Xeon Gold 6226 CPU @2.70
GHz with 24 threads was used. Ntrain max was fixed as 500k
with a wall time of 1 hour for training and episode duration
of 10000 steps. We used PyTorch and its multiprocessing
module to implement the PBT for Breakout Atari game.

From Fig. 8, we can infer that the overall best score of the
model slightly decreases with population may be due the fact
that he model/ policy is exploring more and more previously
unexplored parts of the action-reward space (exploration). This
is also evident from the explore-exploit trade off commonly
discussed in RL literature. [8]. From Fig. 9, it can be also
inferred that the runtime slightly increases with increase in the
population. This can be attributed to the fact that with increase
in population the GPU has now more models to simulate in
parallel. In conclusion, even though the cumulative reward
slightly decreases and runtime increases, the model is able
to learn a robust policy over the period of time.

VI. CONCLUSION

In conclusion, we carried out a comparative analysis for
various parallelization strategies namely multi-threaded PAAC,
distributed PAAC, DNN level parallel and population based
training methods for training an RL agent in Breakout Atari
environment along with learning their strengths and weak-
nesses. Though we did not achieve a significant improvement
in terms of speedup between the distributed and the multi-
threaded version of PAAC, we can be certain that parallel
training can bring down training run-times and encourage
exploration of the state space. Further research can be done

Fig. 9. Population Vs Runtime

in the directions combining these parallel strategies together
as they offer orthogonality and observe their effect on overall
performance and speedup.

VII. BREAKDOWN OF CONTRIBUTIONS

Tejonidhi Deshpande:- Carrying out initial experiments for
PAAC, implementing PBT for Breakout Atari in PyTorch,
carrying out experiments with PBT as mentioned in V-C,
formatting and documenting the final report.

Moises Andrade:- Implementation of the DNN parallel
strategy for PAAC training with DDP; carrying out experi-
ments and comparisons to baseline as in III-A. Formatting
and documenting the final report.

Surya Prakash:- Worked on the implementation of PAAC
in PyTorch and conducted experiments for benchmarking pur-
pose. Developed a distributed version of PAAC V-B and setup
clusters for experiments alongside formatting and documenting
the final report.
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