Georgia Tech

CREATING THE NEXT

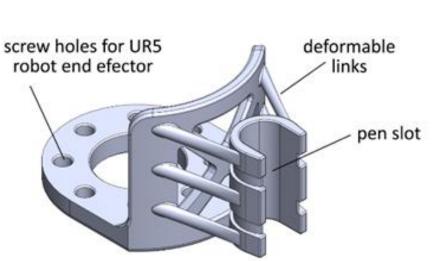
Drawing with Serial Robot Arm

Yu Hang He, Surya Prakash Senthil Kumar, & Qize Tao Spring 2023 Final Project Presentation ME 6407 Robotics

Introduction

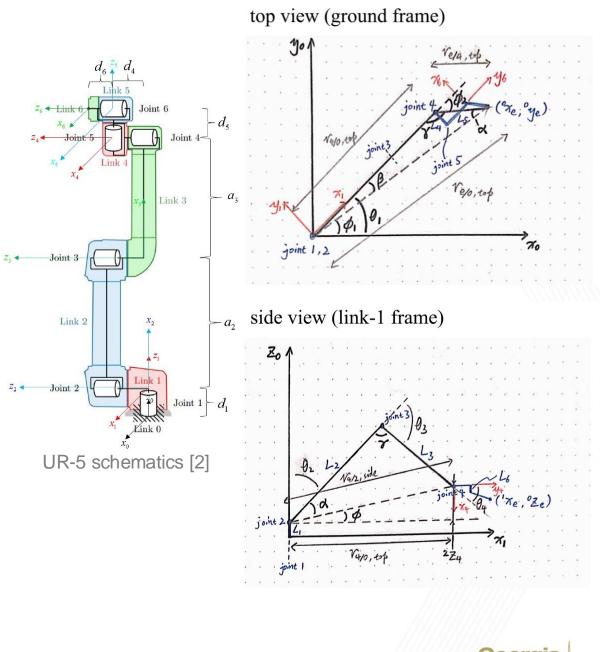
- Our objective is to program a serial chain robot (UR5) to draw an object in task space by getting the waypoints from an arbitrary image.
- Tasks involve Computing Kinematics, Image Processing and Trajectory generation.
- Simulation of UR5 robot in MATLAB demonstrating drawing complex shapes with three time scaling techniques.
- Implementation in real hardware demonstrating drawing of simple polygons (Pentagons, Star and Octagon).

Motivation

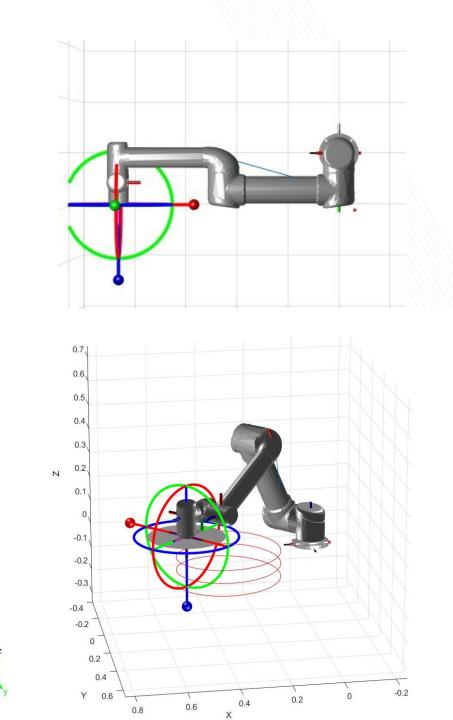

- Motivation:
 - Negative perception of AI image generation
 - No physical drawing process
 - Improve perception through physical drawing process with robot manipulator

Physical Setup

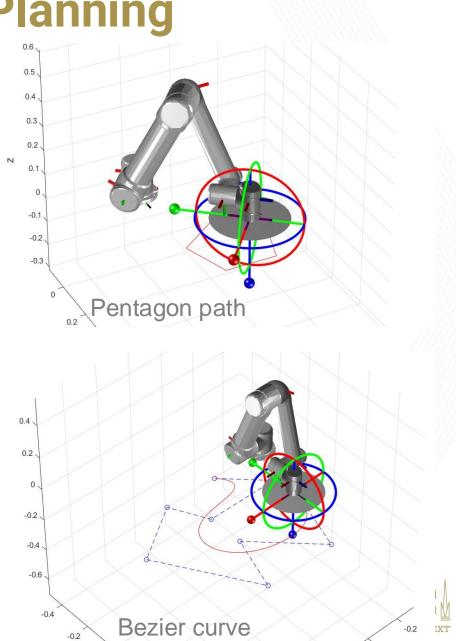
- UR-5 serial robot arm (6-DoF)
- Compliant pen holder
 - Maintains pen contact without force control



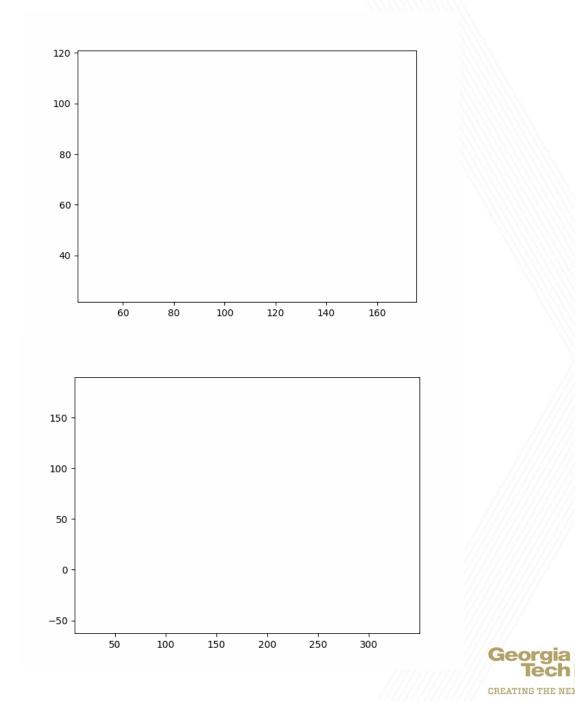
Kinematics


- Pen always point downward
 - joint 5 = $\pi/2$, joint 6 = 0
 - 6-DoF --> 4-DoF
- RDA with variable end effector size
 - Unique analytical solution in elbow-up configuration
 - Link length measured from CAD files

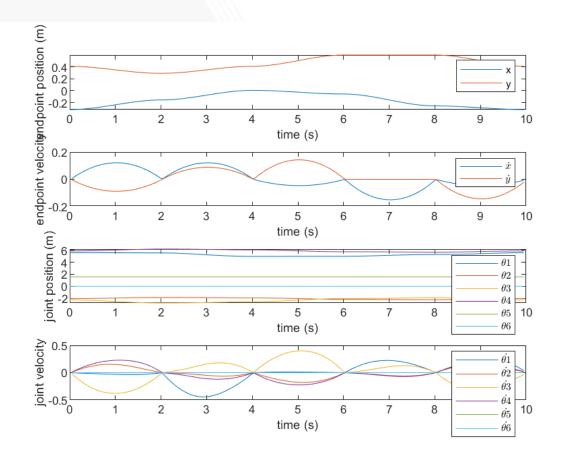
CREATING THE


Simulation in MATLAB

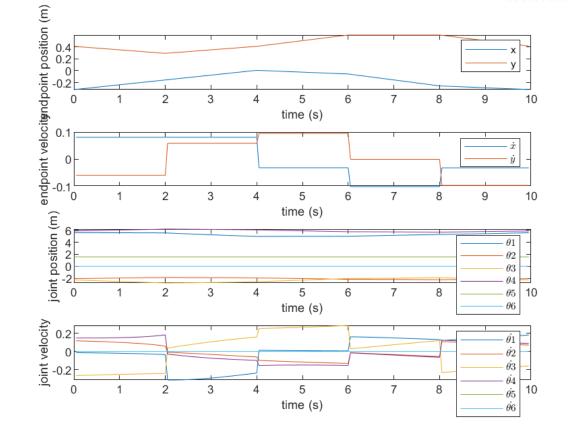
- MATLAB's <u>Robotic System Toolbox</u>
- Provided inverse kinematics solver
 leads to infeasible IK solutions for the physical robot.
- Integrated our RDA for the UR5 with the model.


Trajectory Generation and Motion Planning

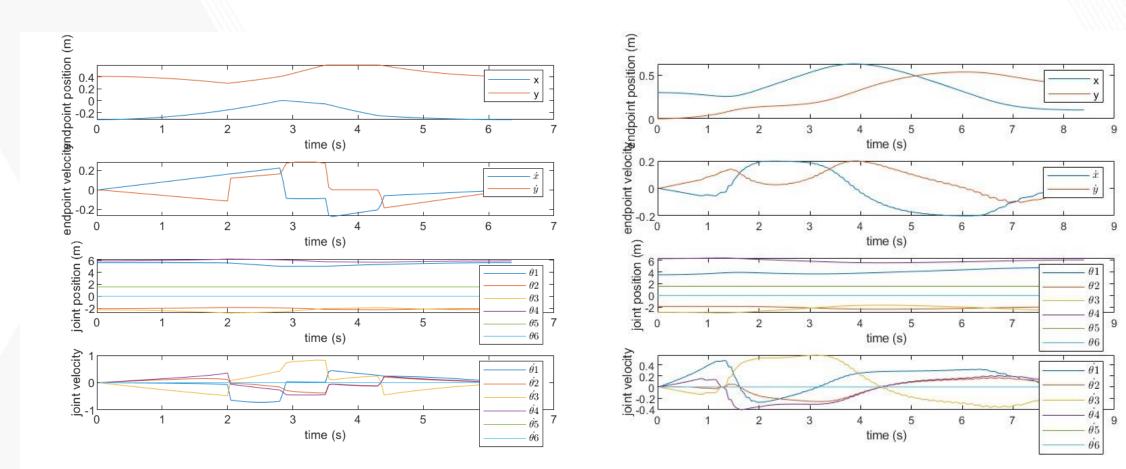
- Time scaling
 - Linear (given time)
 - 3rd order polynomial (given time)
 - Trapezoidal (given vmax, a)
- Path
 - Arbitrary polygon
 - Arch
 - Bézier curve



SVG Path Conversion


- Investigate vector image for generate more complex trajectory
- Parse SVG path format
- Discretize path description for trajectory generation
- Validate the trajectory in MATLAB simulation

Results – Simulation


Polynomial time scaling - pentagon

Linear time scaling - pentagon

Georgia Tech

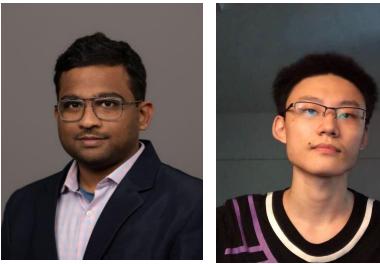
Results – Simulation

Trapezoidal time scaling – pentagon

Trapezoidal time scaling – curve

Results – Physical Robot

- Implement the MATLAB codes in python
- Communicate with physical robot through ROS and UR Driver
- Performed regular polygon drawing under linear and polynomial time scaling



Conclusion

- Trajectory transfer between simulation and physical can be challenging
- Failed simulation with ROS Gazebo
- Complicated art is difficult to process using CV technique
- Testing the trajectory on the physical robot earlier rather than later

Simulation

Appendix: RDA Derivation

Given:

Link lengths: $L_1 = 89.2mm$, $L_2 = 425mm$, $L_3 = 392.25mm$, $L_4 = 110mm$, $L_5 = 94.75mm$ and $L_6 = 81.5mm$

Desired end point position: $\overrightarrow{0p_e} = \langle 0x_e, 0y_e, 0z_e \rangle$

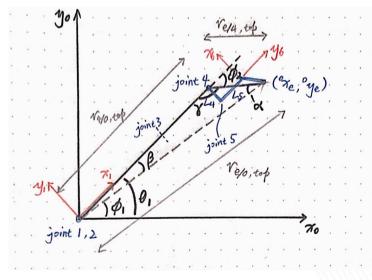
End point position in frame 6 (end effector size): $\overrightarrow{^6p_e} = \langle {^6x_e}, {^6y_e}, {^6z_e} \rangle$

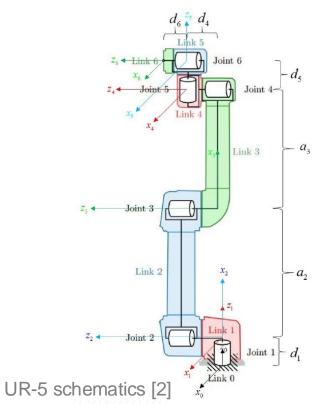
1)

$$\begin{aligned} r_{e/0,top} &= \sqrt{{}^{0}x_{e}^{2} + {}^{0}y_{e}^{2}} \\ r_{e/4,top} &= \sqrt{({}^{6}x_{e} - L_{4})^{2} + ({}^{6}y_{e} + L_{5})^{2}} \\ \phi_{1} &= atan2({}^{0}y_{e}, {}^{0}x_{e}) \\ \phi_{2} &= atan2(L_{4} - {}^{6}x_{e}, {}^{6}y_{e} + L_{5}) \\ \gamma_{1} &= \pi - |\phi_{2}| \\ \alpha_{1} &= \arcsin\left(\sin\gamma_{1} \cdot \frac{r_{e/4,top}}{r_{e/0,top}}\right) \\ \beta_{1} &= |\phi_{2}| - \alpha_{1} \\ \theta_{1} &= \phi_{1} + sign(\phi_{2})\beta_{1} \\ &= \phi_{1} + \phi_{2} - sign(\phi_{2})(\alpha_{1}) \\ \end{aligned}$$

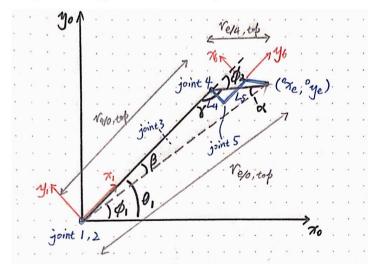
$$r_{4/0,top} &= \sqrt{r_{e/0,top}^{2} + r_{e/4,top}^{2} - 2r_{e/0,top}r_{e/4,top}\cos\beta_{1}} \end{aligned}$$

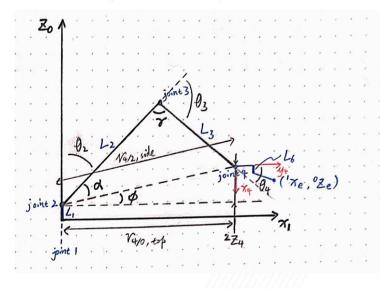
(end point to origin distance on x - y plane) (end point to joint 4 distance on x-y plane)


(law of sine)


solution for θ_1

(joint 4 to origin distance on x-y plane)


for theta_2, 3 and 4 calculation



top view (ground frame)

side view (link-1 frame)

Appendix: RDA Derivation

2)

 ${}^{0}z_{4} = {}^{0}z_{e} + {}^{6}z_{6} + L_{6}$ ${}^{2}z_{4} = {}^{0}z_{4} - L_{1}$ $r_{4/2,side} = \sqrt{r_{4/0,top}^2 + {}^2z_4^2}$ $\phi = atan2(^2z_4, r_{4/0,top})$ $\alpha_2 = \arccos\left(\frac{L_2^2 + r_{4/2,side}^2 - L3^2}{2L_2r_{4/2,side}}\right)$ $\gamma_2 = \arccos\left(\frac{L_2^2 + L_3^2 - r_{4/2,side}^2}{2L_2L_3}\right)$ $\theta_2 = -(\pi/2 - \alpha_2 - \phi)$ $\theta_3 = -(\pi - \gamma_2)$ $\theta_4 = -\pi/2 - \theta_2 - \theta_3$

 $\theta_5 = \pi/2$ and $\theta_6 = 0$ at all time.

(joint 4 to ground height) (joint 2 and 4 height difference) (joint 2 to 4 distance on $x_1 - z_0$ plane)

(law of cosine)

(law of cosine)

solution for θ_2 solution for θ_3 solution for θ_4

[1] J. Villalobos, I. Y. Sanchez and F. Martell, "Statistical comparison of Denavit-Hartenberg based inverse kinematic solutions of the UR5 robotic manipulator," 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), Mauritius, Mauritius, 2021, pp. 1-6.

[2] P. M. Kebria, S. Al-wais, H. Abdi and S. Nahavandi, "Kinematic and dynamic modelling of UR5 manipulator," 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 2016.

[3] J. Arruti, M. Ottavianelli, A. Solari, P. Monzón, P. Musé and J. P. Oliver, "A drawing robot pipeline with artist-inspired execution," 2021 IEEE URUCON, Montevideo, Uruguay, 2021, pp. 461-466.

[4] R. B. Venkataramaiyer, S. Kumar and V. P. Namboodiri, "Can I teach a robot to replicate a line art," 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), Snowmass, CO, USA, 2020, pp. 1922-1930.

[5] F. Gao, J. Zhu, Z. Yu, P. Li and T. Wang, "Making Robots Draw A Vivid Portrait In Two Minutes," 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 2020, pp. 9585-9591.

[6] S. Calinon, J. Epiney and A. Billard, "A humanoid robot drawing human portraits," 5th IEEE-RAS International Conference on Humanoid Robots, 2005., Tsukuba, Japan, 2005, pp. 161-166.

[7] G. Jean-Pierre and Z. Saïd, "The artist robot: A robot drawing like a human artist," 2012 IEEE International Conference on Industrial Technology, Athens, Greece, 2012, pp. 486-491.

[8] T. Chettibi, M. Haddad, H. E. Lehtihet and W. Khalil, "Suboptimal Trajectory Generation for Industrial Robots using Trapezoidal Velocity Profiles," 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 2006, pp. 729-735.

[9] J. Lin, N. Somani, B. Hu, M. Rickert and A. Knoll, "An Efficient and Time-Optimal Trajectory Generation Approach for Waypoints Under Kinematic Constraints and Error Bounds," 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 2018, pp. 5869-5876.

[10] Foit, Krzysztof. "Controlling the movement of the robot's effector on the plane using the SVG markup language." Advanced Materials Research. Vol. 837. Trans Tech Publications Ltd, 2014.

