
Human Motion Prediction: With Great Power Comes Great Res-pose-ability

Abhinandan Krishnan
akrishnan331@gatech.edu

Prajwal Bhaskar Bharadwaj
pbharadwaj33@gatech.edu

Pranay Mathur
pranay.mathur@gatech.edu

Surya Prakash Senthil Kumar
skumar671@gatech.edu

Abstract

Human motion prediction is a vital task for various ap-
plications involving human-machine interaction and scene
understanding and can be formulated as a time-series gen-
erative modelling task. We explore standard baseline im-
plementations to identify which of these can best model
spatio-temporal relations of our problem. We attempt to
provide comparable performance at reduced computational
requirements and analyze under-represented architectures,
by proposing two novel architectures inspired by convolu-
tional sequence-to-sequence models and temporal convolu-
tional networks which outperform similarly sized baselines.
We demonstrate our results on the AMASS-ACCAD dataset
and support design considerations with rigorous analysis
shown in Appendix 5. Our implementation can be found on
GitHub

1. Introduction and Motivation

In this paper, we tackle the problem of human-motion
prediction with a focus on how different architectures affect
performance. The problem can be defined as predicting a
sequence of the most likely future poses of a human given
the history of poses.

Predicting human motion is a critically important task
in the field of human-robot interaction, tracking humans
through successive time frames and motion generation in
computer graphics. Humans are pre-disposed to predicting
future human motions in tasks such as crowd navigation,
playing sports in teams, or even regular social interaction
with other humans. Giving robots and self-driving cars this
ability makes their operation safer and easier to work with
as shown by previous research [12, 4, 9]. We argue that,
in most robotic applications, computational resources are
not abundantly available and applications like self-driving
cars require faster inference and excellent real-time perfor-
mance, making our research impact both of these fields.

Current practices include using methods that are based

on RNNs, Convolutions and Transformers. RNN-based
methods have been previously implemented and surveyed
since they are good at handling sequential data [13]. How-
ever, the performance is short-sighted producing subpar re-
sults to go along with longer training times. Seq2Seq mod-
els perform well while handling inputs that they are trained
upon but have difficulties generalizing to rare and unseen
inputs. They also struggle with capturing long-term de-
pendencies due to vanishing gradients. On the other hand,
transformers [18] are robust, faster and have non-recurrent
behaviour but they possess a limited ability in handing
variable-length input sequences.

In this study, we propose the development and analysis
of two novel architectures inspired by convolutional net-
works and show that they use a small parameter space in
comparison to the transformers without significant degra-
dation in performance. For our analysis, we use the open-
sourced AMASS [15] dataset and the ACCAD dataset, in
particular, [1] due to its size. AMASS unifies multiple
parameterizations used by different datasets into a single
representation. Every joint in the data is represented as a
set of 3x3 rotation matrices, Rmatrix ∈ R9 of their re-
spective angles, and is flattened to a vector. The input
representation of our data consists of vectors of human-
poses, concatenated over 120 time frames and parameter-
ized by 24 joints. Thus the input is a 2D matrix of size
120x24x9 = 120x216 and the size of the output repre-
sentation is 24x24x9 = 24x216, where 24 is the number
of future predictions.

2. Approach

We used the Fairmotion library from Facebook [6]. No
pre-processing or post-processing was required and data-
loading was handled by the library with minor changes for
analysis. The library provides the implementation of sev-
eral baselines which we trained, hyper-paramater tuned and
analyzed to compare the two novel models inspired by con-
volutional sequence-to-sequence models[11] and temporal
convolutional networks [3]. To the best of our knowledge,
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these are the first implementations in PyTorch. For the pur-
poses of evaluation and analysis, we made several changes
to the Fairmotion library which we list below.

1. Contributed two novel implementations, the Convo-
lutional Sequence-to-Sequence model and Temporal
Convolutional Network to the Fairmotion library.

2. Changes to log model metrics, visualize weights, loss
values and MAE values.

3. Modified training scripts to load and train our own
model architectures.

4. Changed optimizers and loss functions used, apart
from trivial changes to hyper-parameters and architec-
tures

A formal notation of the problem is that we are given a
series of seed human poses X1:t = [x1, x2, . . . , xt], where
each xi ∈ RJXA is a parameterization of a human pose
with J joints with each joint angle representation A. And
our goal given these sequence of poses X1:t is predicting
the next T set of poses, X̂t+1:t+T. We also attempt to
compare the computational load of architectures and pro-
pose two novel architectures that address this since the main
problem that we forecasted was the availability of compu-
tational resources, specifically in terms of the availability of
memory to train larger models. As expected, we faced the
Out-of-Memory (OOM) error and had to solve it by increas-
ing swap-space in our SSD and reducing model parameters.

2.1. RNN

The RNN model consists of a single LSTM module to
take an input pose and generate a pose prediction for the
next time step. It involves a forward pass of the LSTM mod-
ule on the given inputs and generates the outputs for each
time step. It further converts the source and target tensors
to the (seqlen, batchsize, inputdim) format, applies dropout
to the source tensor, and generates as many poses as in the
target during training. Further, it generates the output se-
quence and during training, concatenates the encoder and
decoder outputs. Finally, it transposes the output tensor to
the (batchsize, seqlen, inputdim) format and returns it. This
architecture is tested for varying values of hidden size and
choice of optimizer.

2.2. Seq2Seq

The task of a sequence-to-sequence model is to gener-
ate a target sequence from a given seed sequence[11]. Most
sequence-to-sequence models consist of two parts, an en-
coder that encodes the seed sequence into a hidden vari-
able and a decoder that generates the target sequence from
the hidden variable. The seq2seq model uses an encoder-
decoder architecture to generate a target sequence from a

given seed sequence. The encoder encodes the seed se-
quence into a hidden variable and the decoder generates the
target sequence from the hidden variable.

We performed multiple tuning experiments on the
seq2seq model like varying the hidden dimensions and
teacher forcing ratio in an attempt to test which aspect of
its design would allow us to get optimal performance with
the fewest parameters.

2.3. Tied Seq2Seq

In a traditional Seq2Seq model, the encoder and decoder
are separate networks, with their own sets of weights and
biases. A tied sequence-to-sequence (Seq2Seq) model is a
type of neural network architecture where the encoder and
decoder share some or all of their parameters. In contrast,
a tied Seq2Seq model has a shared embedding layer or a
shared output layer between the encoder and decoder.

By sharing parameters between the encoder and decoder,
tied Seq2Seq models can be more efficient in terms of
model size and computation, as they have fewer parameters
to learn. This can also lead to better generalization perfor-
mance and can help prevent overfitting, as the shared pa-
rameters can enforce consistency between the encoder and
decoder. The performances of the tied seq2seq and the tra-
ditional seq2seq are analysed in the subsequent sections and
shown in Table 3.2.

2.4. Transformer

Transformers [18] are one of the most successful archi-
tectures for tasks that involve sequence-to-sequence mod-
elling and predicting data with long-range dependencies. It
consists of an encoder which takes input embeddings aug-
mented with positional encodings. The encoder contains
multi-head attention mechanisms where each head receives
different linearly projected versions of the queries, keys,
and values. Each of these heads produces an output in par-
allel. These are followed by a fully connected feed-forward
network consisting of two linear layers with Rectified Lin-
ear Unit (ReLU) activation in between. These also contain
a residual connection around them. The output of this is
then passed to a decoder which receives the previous out-
put with positional embeddings and implements a multi-
head self-attention mechanism on it. The decoder is only
allowed to attend to tokens prior to the current one in the
sequence through a process of masking. In the next layer
of the decoder, it is concatenated with the output of the en-
coder where the decoder can attend to all input tokens of
the sequence. This is then passed to a fully connected layer
to generate the next prediction of the sequence. We tuned
multiple aspects of the architecture and hyper-parameters
and have analyzed the results in the next section



Figure 1. Convolutional Sequence-To-Sequence Model Architec-
ture [11]

2.5. Convolutional Sequence to Sequence Model

We propose an auto-regressive model based on convolu-
tional sequence-to-sequence architecture for human motion
prediction [11]. The structure of convolutional networks al-
lows them to intrinsically model and learn both spatial de-
pendencies as well as long-term temporal dependencies[5].
The architecture consists of a convolutional long-term en-
coder which is used to encode the entire sequence of mo-
tion X1:t into a latent variable, zel , encoding the entire se-
quence, which is then used by a decoder to predict the se-
quence over the next T frames X̂t+1:t+T. Prior to being
passed to the decoder the long-term encoded latent variable
zel is concatenated with a short-term hidden variable, zes , by
a short-term encoder encoding a shorter sequence. These
are then passed to a spatial decoder which maps the long
and short-term hidden variables, zel and zes to motion pre-
dictions X̂t+1:t+T. The intuition behind using a structure
lies in the ability of CNNs to capture both long-horizon in-
variant information and short-term dynamic information of
human motion. The input consists of each input sequence
X1:t, acting as a row forming the spatial domain and suc-
cessive frames below this forming the temporal axis. To
ensure the receptive field of the encoder can capture cor-
relations of joints from different joints a rectangular kernel
with size 2x7, as in the original paper, is used.

Our proposed architecture uses 3 convolutional layers
with rectangular kernels and ReLU activation in between
followed by a single fully connected layer for the long and
short-term encoders, that create zel and zes respectively. In
the interest of keeping model size small, our short-term en-
coder only encodes the last two data frames. For the de-
coder, we use two fully-connected layers with the first map-
ping the concatenated hidden variables to a lower dimen-
sion followed by the second layer which maps the output
to a single frame of human poses X̂t+1:t+T. The entire
architecture is shown in Figure 1.

A detailed analysis of the model with experiments indi-
cating why certain design decisions were made, along with
ablation studies has been presented in the next section.

2.6. Temporal Convolutional Network

Research on CSS showed that convolutional kernels can
capture long-term dependencies and can model spatiotem-
poral dependencies without needing to depend on too many
steps (O(logn) steps) in the past to determine the future
joint angle estimates. The reason for its low validation
MAE is that the sliding of CSS kernels through different
time frames tends to peek into the future as shown in Fig. 4
which produces sub-optimal outputs during inference. The
number of parameters needed to train the CSS is almost 4x
a conventional transformer to achieve a similar MAE. The
disadvantage of RNNs is the number of steps needed to pre-
dict the future time frames is of the order O(n) for RNN
and hence takes a long time to train. Hence our temporary
problem statement is as follows.

• Build a convolution kernel which prohibits looking
into the future (temporal masking) so as to improve
the validation MAE.

• Improve the receptive field of the network without in-
creasing the number of learnable model parameters.

This motivated us to move in the direction of 1D convolu-
tions as they can effectively model temporal dependencies
[17], especially in the domains of action segmentation, tra-
jectory prediction and machine translation. Temporal Con-
volutional Network (TCN) was originally proposed by [10]
for human action segmentation in videos. It uses a tempo-
ral encoder-decoder architecture that consists of 1D tempo-
ral convolutions (TC) layers to encode temporal dynamics
from the video frames and provide a suitable action predic-
tion. TCN modules use a hierarchical architecture, similar
to conventional 2D CNNs, to increase receptive fields and
efficiently model the long-term dependencies of sequential
data. However, the use of TCNs has been very limited in
predicting human motion, owing to the outstanding perfor-
mance of transformers and generative adversarial networks
in this area in recent years. Thus, we study the effect and
performance of TCNs for human motion prediction by us-
ing a slightly modified version of the architecture proposed
by [3] for our experiments. To prevent the kernels from
learning by peeking into the future, we have used Causal
Convolutions, which zero out all future instances by appro-
priately padding the input before convolution. By keeping
a unity dilation factor and kernel size, our network’s be-
haviour converges into a Hidden Markov Model. Our pro-
posed architecture, is shown in Fig. 2.

To prevent vanishing gradients, we have a residual con-
nection with an identity mapping of the input at the end of
every block. At each TC layer following dilated-causal con-
volution, the output is then batch normalised followed by an
activation with LeakyReLU.



Figure 2. TCN Architecture

2.7. GANs for Motion Prediction

2.7.1 Architecture

We study the performance of Generative Adversarial Net-
works to generate a set of distinct and kinematically valid
future poses given an input pose conditioned on a latent em-
bedding Z ∼ N(0, 1). Since the TCN outperforms all the
other networks that we researched, it forms the generator
of the GAN. The discriminator follows a similar structure
as proposed by [3] and [2] except for the final output layer
where we use a ReLU activation instead of Sigmoid. The
proposed architecture is shown in Fig. 3

2.7.2 Loss Functions

Training of GANs can be quite cumbersome due to the min-
max nature of the generator G and the discriminator D ob-
jectives. Thus we need to be careful about picking up appro-
priate loss functions and carefully monitor the flow of gra-
dients into the individual networks for stable training. The
discriminator is trained in order to minimize the following
objective,

Ldiscrim = E[D(X1:t : G(X1:t,Z))]−E[Dθ(X1:t : Y)]+

λreg||Wdiscrim||2

where : represents the concatenation of two sequences about
the time dimension and λreg which is the regularisation fac-
tor is kept as 1. Similarly, the generator loss function is
given by,

Lgen = Lrecon + Ladv + Lreg (1)

Lrecon =
1

T

t′=t+T∑
t′=t+1

∥|x̂′
t − x′

t∥|2 (2)

Ladv = E[D(G(X1:t,Z))] (3)

Lreg = λreg||Wgen||2, λreg = 1 (4)

Figure 3. TCN-GAN Architecture

3. Experiments and Results
3.1. Evaluation Policy

To compare the performance of our proposed models we
experimented with different versions of baseline implemen-
tations, and minor changes to architectures such as hidden
sizes, number of attention heads, number of layers, opti-
mizers, learning rate schedulers, teacher-forcing ratios and
ablation studies. We highlight that not all of these hyper-
parameters are applicable to every architecture and so a
standard policy was used for changing the hyper-parameter
to evaluate baselines. Hidden sizes were increased from 128
to 512 in factors of two, performance with both SGD and
Adam[8] optimizers were checked, the effect of teacher-
forcing was evaluated, the number of layers was varied be-
ginning from 1 to the maximum value that could be tested
given GPU memory constraints, and for proposed architec-
tures, network blocks were removed to examine how per-
formance varied in their absence. All parameters were left
trainable and no pre-trained weights were used. Con-
catenation layers were the only non-learnable layers. All
architectures were run for 100 epochs and training losses,
validation losses, GPU memory usage, number of parame-
ters and MAE over 6,12,18 and 24 frame predictions were
recorded. All architectures were trained on 4GB Nvidia
RTX 3050 and 3050Ti GPU’s using CUDA [16].

3.2. Performance Metrics and Loss Function

We measured the success and performance of our algo-
rithm using the Mean Angle Error (MAE) which is widely
used and accepted metric for the task of human-motion pre-
diction [14]. Given the Euler angles x̂n,k, MAE can be de-
fined as shown below.

MAE = (NaK)−1
Na∑
n=1

K∑
k=1

|x̂k,n − xk,n| (5)

where x̂k,n denotes the predicted kth angle in frame n
and xk,n is the ground truth. We chose this metric in-
stead of other metrics such as Mean Per Joint Position Er-
ror (MPJPE) and Normalized Power Spectrum Similarity



(NPSS) in the interest of simplicity, the horizon of our pre-
dictions and its widespread acceptance.

During training, we use the mean squared error of the
predicted poses as the loss function:

Lossmodel =
1

T
∥|X̂t+1:t+T −Xt+1:t+T∥|2 (6)

=
1

T

t′=t+T∑
t′=t+1

∥|x̂′
t − x′

t∥|2 (7)

Two different types of regularizing techniques are used
to prevent overfitting - a dropout layer and l2 regularizer.
Our validation graphs indicate that the model was able to
generalize well to unseen input sequences.

3.3. Baseline Analysis

We now discuss the results of hyper-parameter tuning
the baseline models i.e., RNN, Seq2Seq, and Transformers.
Table 3.2 shows the performance comparison between the
baselines. Tied seq2seq performs better than the seq2seq
model while using significantly fewer parameters compared
to latter with the same number of layers. We observed the
tied seq2seq model converged better than the Transformer
over time 6. We believe this is because of the fact that the
tied seq2seq model uses a shared LSTM layer with the same
bases and weights and hence is able to capture the long-
term joint angle dependency better. The tied seq2seq was
trained for 3 layers which gave an optimal performance in
terms of a number of parameters and the MAE values at
different frames. As we expected increasing the hidden size
lead to an improvement in performance except in Seq2Seq
where it began to overfit. With transformers, a major im-
provement was seen with an increase in the number of at-
tention heads. We argue that these improvements can be
attributed to the model being able to capture the dependen-
cies between joints of the sequence due to more heads pro-
cessing the sequence in parallel. Due to regularization and
dropout of 0.2, no overfitting occurred with increasing hid-
den size but the validation loss decrease was not observed
to be smooth. Initially, we attributed this to the learning rate
being too high and but an additional factor was that we used
only dropout while training the transformer and not l2 regu-
larization. RNN and Seq2Seq models were run with a batch
size of 32, but we had to reduce our batch size to 4 to get
the transformer model to fit on the GPU. We postulate that
a higher batch size will lead to smoother batch gradients
resulting in lower fluctuation. We believe that the drop in
performance when the number of layers is increased can be
attributed to a similar reason. Training the data on a higher
batch size with more instances and over more epochs will
result in better learning. We also believe this will ensure a
lower overall validation loss with less fluctuation than seen
in Figure 7. We use Student-Teacher Curriculum-Learning

(CL) where initially the input to the model is the original
input sequence with weight 1 but this gradually drops to
0 over time. In transformers, we observed that the train-
ing loss varies smoothly when the student-teacher curricu-
lum learning is used in comparison to when the weight of
teacher forcing is set constantly to 1. This explains the vari-
ation in loss seen at 50 epochs when the teacher forcing
drops to 0. The losses can be seen in Figure 7.

3.4. CSS Analysis

The experiments conducted include the effect of the op-
timizer, hidden size of the encoder and decoder, loss func-
tion, convolutional kernel sizes and ablation studies keeping
only the long-term encoder and subsequently only the short-
term encoder. All experiments were run for 100 epochs
with a learning rate scheduler that reduces the learning rate
when validation plateaus out. A general trend observed was
increasing validation MAE with increasing hidden dimen-
sions of the encoder and decoder. This however peaked at
a hidden size of 512 where slight overfitting was observed
since training loss decreased but validation loss increased
along with MAE values. A hidden size of 256 was an opti-
mal balance. Change in optimizer from Adam to SGD re-
sulted in a trivial improvement and resulted in the best per-
formance 5. The major difference was observed with convo-
lutional kernel sizes. We tested results with kernel sizes of
2x7, 4x4 and 7x2 and obtained the best results with a kernel
size of 2x7. We argue that this is because performing a rect-
angular convolution kernel over the spatial axis captures the
dependencies between different body parts most effectively
[11]. This is illustrated in Figure 4. Our ablation studies in-
dicate that the long-term encoder was an extremely crucial
aspect of the architecture as performance deteriorated sig-
nificantly without it and improved significantly with it. We
argue that this was crucial in capturing long-term depen-
dencies and helps the decoder take into account the history
of poses rather than just the immediate history of the last
two poses. To prevent overfitting we used dropout in the
encoders and obtain smooth losses as seen in Figure 7.

3.5. TCN Analysis

Similar to CSS, the experiments conducted on TCN were
run for 100 epochs with the learning rate scheduler fixed
from above and a batch size of 32 was used throughout.
The number of hidden dimensions was set as 64 instead of
128 as proposed by [3] and the number of attention heads
were fixed as 1 due to CUDA compute constraints. Ow-
ing to better performance over SGD on CSS, Adam was
the choice of optimizer for these experiments. The abla-
tion study was conducted to understand the importance of
temporal attention for TCN and our results are tabulated in
Table 5. For our experiments, we used a temporal attention
head that computes scores between the input poses using



Model Num.
Params

GPU
Memory

Num.
Layers

Hidden
Dim.

Training
Loss

Val.
loss

MAE
@6

MAE
@12

MAE
@18

MAE
@24

RNN 1,605,848 1.35 GB 1 512 1.70E-02 1.79E-02 12.8180 26.0632 39.1999 52.4308
Seq2Seq 356,424 1.10 GB 1 256 2.45E-03 6.63E-03 4.8862 11.5677 19.2466 27.3418
Tied-Seq2Seq 694,344 1.20 GB 3 256 1.04E-03 5.88E-03 4.6842 10.7567 17.4765 25.1659
TF 4,431,576 3.16 GB 1 512 5.97E-02 4.38E-02 4.2841 12.5953 22.3869 32.8969
CSS 15,033,688 2.40 GB - 256 7.95E-03 2.05E-02 8.1264 15.6363 23.6327 32.1456
TCN-A 1,967,288 2.40 GB - 64 5.8E-03 3.8E-03 2.0112 6.8700 13.3982 20.8592
GAN-WHR 1,206,369 1.8 GB - 64 2.29 3.710E-03 1.9010 6.5865 12.9655 20.2525

Table 1. Comparative results of all architectures with the best results highlighted in bold. TF-Transformer. CSS-Convolutional Sequence-
to-Sequence. TCN-A Temporal Convolutional Network with Attention. GAN-WHR (With Hinge Loss and ReLU)

scaled dot product and Softmax. The training time was rel-
atively small for TCN when compared to other networks
due to its reduced number of learnable parameters. We can
observe that, the TCN w/attention is able to perform rel-
atively better when compared to its counterpart. This can
be attributed to the fact that the temporal attention head
allows the network to focus more on certain frames that
provide important contextual information for motion pre-
diction. Another ablation study is the influence of residual
connections between the blocks and it can be clearly seen
that without the residual connection, the MAE is reduced.
This is because that the model fails to capture the long-term
temporal dependencies and thus the problem of vanishing
gradients.

3.6. TCN-GAN Analysis

The generator of the TCN-GAN has a similar architec-
ture to that of proposed TCN model and number of discrim-
inator layers is fixed as 5 with the last layer being mapped
with Sigmoid activation. The training of the GAN was car-
ried out in a conventional fashion where the discriminator
and the generator are updated at every step and all the hy-
perparameters were the same as above. After training with
the above settings, We observed that the discriminator sat-
urated quickly without affecting the MAE even though the
generator loss decreased consistently. We attributed the rea-
son to be due to the fact that the quality of generated sam-
ples was good enough to effectively fool the discriminator
but was not good enough to match the real data. Also, we
reasoned that there wasn’t a continuous gradient flow within
the network due to the vanishing gradient problem caused
by the Sigmoid activation. We came to this conclusion af-
ter executing multiple trials with loss functions like the one
proposed by [7] to enforce the ρ-Lipschitz constraint on the
gradient for a stable GAN training. GAN validation loss
is higher than training loss since the former only considers
reconstruction loss 1.

To ameliorate the issue, we used an SVM-like Hinge

Loss formulation for the discriminator. In addition to that,
we replaced the terminal Sigmoid with a ReLU activation
to prevent gradient saturation. This approach turned out to
be successful in reducing the MAE as it can be seen in Ta-
ble 3.2. Other methods like infusing arbitrary noise in the
discriminator’s linear layers and training the discriminator
with half the speed as the generator were carried out but
their performance was sub-optimal. For space constraints,
we will be attaching only the successful trials from the ap-
proaches taken. and the rest of the results will be attached
in this sheet.

3.7. Results

Having discussed the intricacies of individual model per-
formance we now present a comparison of different archi-
tectures. The results of our runs can be seen in Table
3.2. Standard RNN implementations contain fewer parame-
ters than other models but fail to perform effectively where
predictions over a longer horizon is required. We argue
that this is because there is no aspect of the model that
helps it capture long-term dependencies effectively. Our
proposed model Temporal Convolutional Networks (TCN)
clearly outperforms all other architectures while the Con-
volutional Sequence-to-Sequence model (CSS), due to its
receptive field was able to capture long-term dependencies
better, producing better results than a transformer as seen
in the MAE@24 metric even though the transformer per-
forms better at MAE@6 as seen in Figure 6. Addition-
ally, we found that all these models had comparable GPU
utilization and TCN required significantly fewer parame-
ters. The large number of parameters in the Convolutional
Sequence-to-Sequence Model can be attributed to the fully
connected layers in its decoder. Despite this GPU utiliza-
tion was capped at 2.4 GB. Since we were able to obtain
better MAE results with fewer parameters we succeeded in
our endeavour. Our detailed results with raw data can be
found in the sheet here.

https://docs.google.com/spreadsheets/d/1-ZGOlFMDoSexRO-VkEqZUCMsEjO1PAv_TgbhH_aF-aQ/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1-ZGOlFMDoSexRO-VkEqZUCMsEjO1PAv_TgbhH_aF-aQ/edit?usp=sharing


4. Conclusion and Future Work
Human motion prediction and trajectory estimation is

critical when it comes to autonomous navigation. In this
work, we proposed two novel implementations, CSS and
TCN-GAN that use a small parameter space and convolu-
tions to perform motion prediction and have presented their
performance against the baseline sequential models. Fu-
ture work could include, exploring convolutional networks
along with robust generators and discriminators since our
analysis shows this is a promising future direction.
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5. Work Division and Appendix



Student Name Contributed Aspects Details
Abhinandan Krishnan Seq2Seq and Tied Seq2Seq Analysis, Hyper-parameter tuning, Minor Modifications

in Architecture. Generated plots used to compare perfor-
mance of models

Report Analysis of Seq2Seq based models
Prajwal Bhaskar Bharadwaj RNN and Optimizer study Hyper-parameter tuning, Execution time and memory

comparison, CUDA and swap space setup for reduced
Report runtime, Analysis of RNN models

Pranay Mathur Convolutional Sequence-to-Sequence Models Implementation, Analysis, Hyper-parameter Tuning, Ab-
lation Studies of CSS. See css.py, css ablation.py,
css encoder decoder.py, Table 5

Transformers Analysis, Hyper-parameter tuning, Minor Modifications
in Architecture. See Table 5

Report Analysis of Transformers, CSS, Overall Results Analysis
Surya Prakash TCN Complete implementation, analysis and ablation studies

for both the networks.
TCN-GAN Implemented loss functions and modified training scripts

for TCN-GAN.
Report Check code for more details

Table 2. Contributions of team members.

Figure 4. Weights of the long-term encoder for CSS visualized: The x-axis is joint angles and the y-axis is temporally stacked sequences.
Due to the rectangular kernel for convolution, joints that are spatially distant and sequences that are temporally close are involved in the
final prediction. The convolutional networks progressively pay more attention to previous time instances as weights get brighter in the
lower part of the y-axis at later times

Figure 5. Weights of the TCN architecture with and without attention are visualised. We can see that the network never peeks into the future
because of temporal masking. TCN with attention learns information about specific joint angles that affect the future poses and hence the
weights are more concentrated in contrast to TCN without attention.

https://github.com/Matnay/fairmotion/blob/conv_seq2seq/fairmotion/models/css.py
https://github.com/Matnay/fairmotion/blob/conv_seq2seq/fairmotion/models/css_ablation.py
https://github.com/Matnay/fairmotion/blob/conv_seq2seq/fairmotion/models/css_encoder_decoder.py
https://github.com/Matnay/fairmotion/tree/tcn/fairmotion


Figure 6. MAE values for different model Architectures

Figure 7. Losses of different model architectures trained over 100 epochs

Model Optimizer Hidden
Dim

Training
Loss Val loss MAE@6 MAE@12 MAE@18 MAE@24

CSS-128 Adam 128 9.15E-03 2.12E-02 8.4702 16.3423 24.6866 33.4429
CSS-256 Adam 256 4.98E-03 1.94E-02 8.2684 16.0081 24.1368 32.6177
CSS-512 Adam 512 7.83E-03 2.22E-02 8.7596 16.5657 24.7893 33.4861
CSS-256 SGD 256 7.95E-03 2.05E-02 8.1264 15.6363 23.6327 32.1456
CSS-NLE Adam 256 3.98E-02 4.42E-02 14.7198 29.6122 44.3474 59.1356
CSS-NSE Adam 256 1.08E-02 2.19E-02 8.4779 16.3185 24.6078 33.3461

Table 3. Results of the Convolutional Sequence-to-Sequence Model with the best results have been highlighted in bold. CSS-NLE and
CSS-NCE are the models without the Long-term encoder and short-term encoder respectively

Model Num.
Params

GPU
Memory

Hidden
Dim.

Training
Loss

Val.
loss

MAE
@6

MAE
@12

MAE
@18

MAE
@24

TCN-NA 1,471,928 2.0 GB 64 4.80E-03 4.20E-03 2.5318 7.4823 14.0253 21.5182
TCN-NR 1,471,928 2.0 GB 64 2.08E-03 1.98E-03 15.0200 30.2650 45.2600 60.233
GAN-NHS 1,206,369 1.8 GB 64 4.88 4.933E-03 4.329 9.828 16.498 24.311

Table 4. Comparative results of TCN and TCGAN architectures TCN-NA Temporal Convolutional Network with no Attention. TCN-NR
Temporal Convolutional Network with no residual connections between blocks. GAN-NHS (No Hinge loss and Sigmoid))



Model Optimizer Num.
Layers

Num.
Heads

Hidden
Dim

Training
Loss Val loss MAE@6 MAE@12 MAE@18 MAE@24

TF-128 Adam 1 4 128 1.08E-01 3.72E-02 5.6048 14.3658 23.6565 33.1254
TF-256 Adam 1 4 256 5.44E-02 5.17E-02 4.8089 13.9666 24.5204 35.7751
TF-512 Adam 1 4 512 5.97E-02 4.38E-02 4.2841 12.5953 22.3869 32.8969
TF-512 SGD 1 4 512 1.58E-02 5.11E-02 7.2788 17.5394 28.5313 39.8764
TF-512 Adam 2 4 512 7.86E-02 4.92E-02 6.2024 16.2695 27.4354 38.9860
TF-512 Adam 1 2 512 1.86E-01 1.22E-01 5.2564 17.9348 28.7984 39.9487

Table 5. Results of the Transformers with the best results have been highlighted in bold

Model GPU
Memory GFLOPS MAE

@6
MAE
@12

MAE
@18

MAE
@24

RNN 1.35 GB 0.15652 12.8180 26.0632 39.1999 52.4308
Seq2Seq 1.10 GB 0.14320 4.8862 11.5677 19.2466 27.3418
Tied-Seq2Seq 1.20 GB 0.89300 4.6842 10.7567 17.4765 25.1659
TF 3.16 GB 6.3000 4.2841 12.5953 22.3869 32.8969
CSS 2.40 GB 1.71552 8.1264 15.6363 23.6327 32.1456
TCN-A 2.40 GB 0.22976 2.0112 6.8700 13.3982 20.8592
GAN-WHR 1.8 GB 0.17655 1.9010 6.5865 12.9655 20.2525

Table 6. Shows the number of floating point operations (GFLOPS) required for each model with the transformer requiring the highest.
Our proposed architectures require very small FLOPS to produce a better MAE on the validation dataset. Our proposed networks are
highlighted in bold


